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We present a technique for calculating the Lyapunov spectrum from a scalar time series. The tech-
nique is particularly useful when the data set is short and/or noisy. The method is based on an orthogo-
nal polynomial expansion of the dynamics. For comparison purposes we test the new technique to two
previous methods. We find that the global method performs as well as, or better than, either of the pre-

vious techniques.

PACS number(s): 05.45.+b

I. INTRODUCTION

Over the past few years there has been a great deal of
research effort devoted to determining Lyapunov ex-
ponents from a scalar time series [1-7]. The spectrum of
global Lyapunov exponents is important for a variety of
reasons. Lyapunov exponents provide average limits on
one’s ability to predict the future evolution of phase-
space locations. They are invariant under coordinate
transformations. When coupled to the Kaplan-Yorke
conjecture they provide a good estimate of the informa-
tion dimension of the attractor, and when combined with
the Pesin identity they provide a value for the
Kolmogorov-Sinai entropy of the dynamics [8,9]. The
Lyapunov exponents determine the average rate of con-
vergence or divergence for nearby trajectories. If one or
more of them is positive then trajectories that are initially
nearby will diverge over time, and the system will have
positive entropy. Finally, at least one positive Lyapunov
exponent is the definition of a chaotic dynamical system.

A persistent problem facing many researchers occurs
when one wants the Lyapunov exponents but the data set
at hand is short and/or contains noise. This problem is
constantly faced by experimental researchers. To the
best of our knowledge, only one of the previous tech-
niques specifically addressed this problem [7]. In this pa-
per we address the problem of short and/or noisy data
using a technique that is quite different from the ones
previously used.

The technique we have developed for determining the
global Lyapunov exponents involves globally fitting the
dynamics as an expansion involving orthogonal poly-
nomials. Assume that the scalar data set
x(n), n=1,...,N has been embedded into a dg-
dimensional phase space (time delay works well but is by
no means required). The embedded vectors are given by
y(n), n=12,...,N, where

y(n)=(x(n),x(n+T),...,x([n+(dg—1)T]))
and T as well as d are easily found [14,15]. Time evolu-
tion in the reconstructed phase space is given by
y(n)—y(n +1). We assume that the dynamics originates
from or is best modeled by a mapping y(n +1)=F(y(n)).
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The mapping F is determined as an expansion in terms of
orthogonal polynomials 7" [10,11]. These polynomials
are constructed, via Gram-Schmidt, to be orthonormal
on the attractor

(7V)7 0y = [dzp(2)a D (z)r P (2)=8,; , (1)

where the superscripts I and J are dg-dimensional vec-
tors that indicate the order of the polynomial. The densi-
ty function p(z) is the natural density on the attractor

L S s(z—y(n))
— z—y(n)),
Nngl

plz)=
. c. d .
and z is any point in R *. The presence of p(z) in Eq. (1)
insures that the 7! ’s are orthogonal on the portion of
phase space occupied by the attractor.
”{he mapping F is given as an expansion in terms of the
Dog o
s via

F= 2(:(1)77.(1) X (2)
I

-

The expansion coefficients C'!) are determined by using
the orthonormality of the 7!”s. Thus the C’s are given
by

1

N
N S y(n +1DaPy(n)) . (3)

n=1

C(I):<1T.(I)[F>:

The details of the exact functional form of the #''’s and
how to explicitly calculate the C’s are quite complicated.
In order to preserve the continuity of this short paper we
have chosen not to include these results here. For these
details we direct the reader to the paper by Giona, Len-
tini, and Cimagalli as well as our larger paper [10,11].

It is worthwhile to note that the mapping that results
from our procedure is a global map and will be used as
such. Previous techniques for determining the spectrum
of Lyapunov exponents from time series generated local
mapping of “small” neighborhoods in order to model the
dynamics (cf. Refs. [2—7]). Thus our use of a global map
is quite different from the previous approaches. Further-
more, using orthonormal polynomials as a basis for ex-
panding functions is numerically more stable than using
the standard basis of (1,x,x2, . . ., etc.) [12].

Having found F from Egs. (2) and (3) it is straightfor-
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ward to differentiate F to find its Jacobian. In fact, since
F is a polynomial the Jacobian is just the linear part of
the map. (An explicit expression for DF can be found in
our larger paper [11].) Let DF(z) denote the Jacobian of
the mapping F evaluated at the phase-space location z.
To determine the Lyapunov exponents one forms the
product of Jacobians

L—1
DFX(y(n))= 3 DF(y(n +i))
i=0

and from this product the Oseledec matrix [13]
O[L,z]={[DFX(z)]"-DFL(z)} /L . )

The Lyapunov exponents are determined from the eigen-
values of the Oseledec matrix in the limit L — o [5,13].
The usual QR decomposition technique is used to deter-
mine the Lyapunov exponents from Eq. (4) in the large L
limit [5].

Equation (4) implies evaluating the Jacobians along an
orbit of the dynamics. In our work we have evaluated
the Jacobians along the dirty orbit given by the data.
Since we don’t have a clean orbit in our possession this is
unavoidable. However, this does not seem to limit our
ability to determine the Lyapunov exponents. (In our
larger paper we investigated the calculation of Lyapunov
exponents from true orbits of the fitted map F [11].) We
have performed numerical experiments on a variety of
dynamical systems in order to determine the usefulness of
our method.

In each case the results from our technique are com-
pared to the results one obtains from the techniques of
Zeng, Eykholt, and Pielke [7] (ZEP) and Brown, Bryant,
and Abarbanel [4] (BBA). The ZEP and BBA techniques
are two of the standard methods for -calculating
Lyapunov exponents from time series data. Therefore,
they represent reasonable choices for the purposes of
comparisons. We are interested in time series data that
has been contaminated by additive noise. The ZEP and
BBA techniques differ in the manner used to form the
neighborhoods employed by the local maps. The implica-
tions of these differences in the presence of noise will be
discussed in Sec. II. (In passing, we remark that the BBA
method was designed to work in the noise-free arena.
Therefore, it should not be surprising that it does not per-
form well when noise exists in the signal.)

For the numerically generated test cases a clean scalar
data set x (n) was formed and then contaminated with
additive noise 7. Thus the data used in the embedding
was x(n)+mn(n). The noise m was generated as
n= AN (0,1), where A4 is an amplitude, which we vary.
N (0,1) are random numbers whose distributions are ei-
ther normal with mean O and standard deviation 1, or
uniform between +1. The dirty scalar data was then em-
bedded, via time delays, into d; =2 or d; =3 dimensional
phase spaces. (The correct value of the embedding di-
mension and time delay was found previously by the
average-mutual-information and false-near-neighbor
methods [14,15].) A prediction function F is then deter-
mined and the Lyapunov exponents are calculated.

All of the dynamical systems that were investigated in
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our numerical experiments are mappings of the plane
into itself. The examples are the Hénon map, the Ikeda
map, and a polynomial map we call the McDonald, Gre-
bogi, Ott, and Yorke (MGOY) map [16-18]. The Hénon
map is well known and given by

x(n+1)=1.0—1.4x%n)+y(n),
y(n+1)=0.3x(n) .

It has an exact time delay representation as a second-
order polynomial. The Ikeda map is given by

z(n +1)=1.0+0.76z(n)
X exp(i{0.4—6.0/[1.0+|z(n)|?]}) .

It contains an exponential term and cannot be represent-
ed as a finite order polynomial. The MGOY map is given
by

x(n+1)=x2%n)—y%n)+x(n)—0.295y (n)+0.048 ,
y(n+1)=2.0x(n)y(n)+x(n)+0.6y(n) .

This map differs from the previous cases in that it is not
invertible, and, like the Ikeda map, cannot be represented
as a finite order polynomial when embedded in d; =3 di-
mensions. The behaviors of these maps are very different.
Thus they, in some sense, are representative of the types
of behaviors that occur in dynamical systems which are
inherently maps. For the Hénon and MGOY maps the x
coordinate was used as the scalar data set, while the
imaginary part of z was used for the Ikeda data set.

In the next section we present the results of our numer-
ical experiments on these systems. The final section of
this paper contains our conclusions and a discussion of
our future work in this area.

II. RESULTS AND NUMERICAL EXPERIMENTS

In Fig. 1 we present a d; =3 dimensional embedding of
data from the Ikeda map. In Fig. 2 we present the same
data with an additive noise level of 4 =0.1 (20% noise).
At this noise level all of the detailed structure that is evi-
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FIG. 1. N =1000 clean data vectors from the Ikeda map em-
bedded into d; =3 dimensions.



3964

-0.5
S 0
Xy 7 ©5

-0.5

) . 05 f —x(m)

FIG. 2. N =1000 noisy data vectors from the Ikeda map em-
bedded into d; =3 dimensions. The noise level is 20%.

dent in the clean signal is lost. Figure 2 is representative
of the quality of reconstructions that are available from
many experimental systems. For each figure we used
N =1000 data points. For the numerical experiments on
our new method we restricted F to a maximum order of
N,=10. (N,=10 was used whenever possible. If it was
not possible to generate orthogonal polynomials of this
order then we used the maximum order we could obtain.
This was typically N, ~7. In our larger paper we discuss
the difficulties associated with obtaining polynomials for
larger values of N, [11].) For the ZEP and BBA methods
we used fits of up to V, =5 when modeling the dynamics
of the neighborhoods. (Although the symbol N, is used
for all cases it is important to remember that for ZEP and
BBA its value denotes the order of a local polynomial fit
while for our new method its value denoted a global
orthonormal polynomial fit.)

Examples of the type of raw output obtained from the
ZEP, BBA, and our new method is given in Tables I-III.
Respectively, they report results for Gaussian noise add-
ed to the Hénon map when N =750 and A4 =0.056
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(~7%), the Ikeda map when N =1100 and 4 =0.032
(~7%), and the MGOY map when N =2000 and
A =0.0056 (~2%). It is obvious that the noise is
affecting the calculated values for A, and A, in each case.
In order to obtain the single values of A which are plotted
in the figures we have often averaged over some of the or-
ders of the fit. Averaging occurred when similar values
of A were produced for a range of N, values. When a pla-
teau was not present we observed that the N, =1 values
of A, and A, were the most accurate for the ZEP tech-
nique. Therefore, these values were used in the figures.
(Exceptions occurred only when the noise levels were
high enough that all of the calculated values of A were
grossly incorrect.) The BBA results typically displayed a
wide range of values for the A’s, none of which were
correct (cf. Tables I and II). To obtain the values plotted
in the figures we averaged over any consistent a set of N,
values.

An example of a long plateau can be seen in Table I,
where we have averaged over N,=2-9 to obtain the
plotted values of the Lyapunov exponents. The range of
values produced by our technique for A, in this case has a
slight two-plateau structure. By averaging we are elim-
inating this behavior. We understand that this is an arbi-
trary procedure on our part and that other researchers
may use different approaches. (One could, for example,
only use values for N, >5 or N, <5.) But in the absence
of knowledge as to the true value of the exponent we con-
sider ours to be a reasonable course to pursue. For the
ZEP results we do not observe a plateau. Therefore, we
have plotted the N, =1 data. In Table II we observe a
short plateau for N,=1 and 2 in the ZEP data. The
values for A; and A, when N, =2 are very different from
the values found for N, >2. We have averaged these two
values for our figures. Table III again indicates the com-
plete absence of a plateau for the ZEP method. (This oc-
curred in MGOY data for all values of 4 >0.01 and
often for smaller values of 4.)

The results of our calculations for the Hénon, Ikeda,
and MGOY maps are presented in Figs. 3-5, respective-
ly. In all of our figures the solid symbols indicate aver-
ages obtained by either the ZEP and BBA method for
calculating Lyapunov exponents, while the empty sym-
bols indicate the averages of our current method. The

TABLE I. Raw values of the Lyapunov exponents for Hénon data for N =750, and Gaussian noises
with 4 =0.056. The accepted values are A, =0.408 and A= —1.62.

ZEP method BBA method Our method
N, Ay A, M Ay M Ay
1 0.31017 —0.73267 0.823 64 —0.31811 —0.53056 —1.2253
2 0.484 40 —0.62307 0.57371 —0.47490 0.41637 —1.6842
3 0.73063 —0.38701 0.696 36 —0.41189 0.443 99 —1.6923
4 0.817 12 —0.234 82 0.657 68 —0.404 60 0.43543 —1.5629
5 1.0623 —0.164 52 0.674 85 —0.34491 0.45532 —1.6255
6 0.42521 —1.3114
7 0.407 17 —1.3287
8 0.408 13 —1.3460
9 0.409 61 —1.3285
10 0.42329 —1.1828
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TABLE II. Raw values of the Lyapunov exponents for Ikeda data for N =1100, and Gaussian noises
with 4 =0.032. The accepted values are A, =0.355 and A= —0.904.

ZEP method BBA method Our method
N, A A, M Ay A Ay
1 0.34332 —0.800 65 0.43562 —0.697 47 —0.44155 —0.76052
2 0.344 64 —0.84155 0.366 70 —0.788 65 0.23495 —0.779 89
3 0.47296 —0.74707 0.409 58 —0.73021 0.443 67 —1.1858
4 0.567 81 —0.67177 0.47358 —0.746 48 0.38808 —1.0787
5 0.62032 —0.598 74 0.477 34 —0.684 42 0.39277 —0.949 59
6 0.368 58 —1.0708
7 0.364 13 —0.987 27
8 0.348 75 —0.92957
9 0.364 30 —0.906 26
10 0.36753 —0.77170

solid line indicates the accepted values for the Lyapunov
exponent A; and A,.

In Figs. 3 we used a dz=2 dimensional embedding
with N =750 and/or N =4000 points. For this case the
noise size 4 ranged between 0.001 and 0.1. As an exam-
ple of the type of problems that occur with the BBA con-
sider Fig. 3(c), where N =750 and Gaussian noise is used.
In this figure A;+A,>0 for 4 >0.03. This is incorrect
since it implies the absence of an attractor. The same
thing happens for all other cases when the BBA tech-
nique is used. The only difference is the exact value of 4
where this failure occurs. The divergence of the calculat-
ed values of A, and A, gets worse when the amount of
data N increases. This behavior is an easily explained
property of the BBA method and will be discussed below.

The Figs. 3(a) and 3(b) indicate that the ZEP technique
performs well when determining A,. This improvement
over BBA will be observed in all of our test cases. How-
ever, the same figures show that ZEP, like BBA, is unable
to determine the correct value of A,. In general we will
find that ZEP often performs poorly when attempting to
determine A,.

Figures 3 clearly indicate that our technique is more
robust to noise than either the BBA or the ZEP method.
Our method performs better than BBA for all cases, and
performs as well as ZEP when determining the value of
A,. The figures also show that our technique is capable of

determining the correct value of A,. Neither of the other
methods was able to accomplish this task. We also find
that this method works with as few as 750 data vectors
and noise levels as high as 4 =0.1 (~10-15 % noise).

For the last two systems we used dp =3 dimensional
embeddings for the data. The true dynamical systems
have only two Lyapunov exponents. The technique of
Abarbanel and Sushchik [19] provides a way of determin-
ing which of the three exponents is spurious. Thus in a
blind test one can identify which exponents are ‘“true”
and which are ‘“‘artifacts” of the embedding. We direct
the interested reader to Ref. [19], and references therein,
for a complete discussion of this technique.

In Figs. 4 we show only the two calculated exponents
that correspond to the true Ikeda map exponents. We
have chosen not to show the spurious third exponent. In
these figures we used either N =1100 or N =20000 data
points while 4 ranged from 0.001 to 0.1. We see that
once again BBA is unable to correctly estimate the value
of A,. Although we will not show the data, we find that
for BBA increasing N increases the divergence of A; just
as it did in the Hénon example. The ZEP method and
our method are comparable in their performance on this
data. Both methods are capable of determining accurate
values for the positive Lyapunov exponents even for large
noise levels. For N =1100 our method is marginally
better than ZEP when determining A,, while for

TABLE III. Raw values of the Lyapunov exponents for MGOY data for N =2000, and Gaussian
noises with 4 =0.0056. The accepted values are A;=0.141 and A= —0.405.

ZEP method Our method

N, A Ay As A Ay Ay

1 0.12848 —0.248 52 —0.67903 —0.29090 —0.29090 —0.46323
2 0.204 23 —0.15423 —0.67729 0.306 84 0.18770 —0.36421
3 0.299 89 —0.020 80 —0.679 60 0.33589 0.169 86 —0.798 35
4 0.465 59 0.061 57 —0.57107 0.18491 —0.014 33 —0.62347
5 0.667 05 0.173 11 —0.50559 0.168 08 —0.37347 —0.88111
6 0.164 42 —0.386 53 —0.80990
7 0.15373 —0.41709 —0.804 03
8 0.144 92 —0.45305 —0.929 68
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N =20000 ZEP is marginally better than our method.
We conclude that for Ikeda data the two techniques ob-
tain the correct answers and are equal in their perfor-
mance.

In Figs. 5 we show all three calculated exponents for
data from the MGOY map. Once again N =1100 and
N =20000 for the figures, and the noise size ranged from
A =0.001 to A =0.1. Figures 5(a) and 5(b) indicate that
the ZEP method and our method are comparable in their
abilities to determine the positive Lyapunov exponent.
The figures also show that for all case the ZEP method is
unable to determine the correct value for A,, whereas our
method obtains the correct value. We found that the
BBA method was unable to determine the correct value
for either Lyapunov exponent for this map, and experi-
enced the same type of divergence with increasing A
and/or N as found for our test on the Hénon and Ikeda
maps (cf. Figs. 3 and 4).

The figures show that for all of our test cases, the BBA
method produces poorer results when larger data sets are
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used. The BBA method uses intimate details about the
evolution of ‘“‘small neighborhoods” to construct Jacobi-
ans. As N increases the size of the neighborhood used for
the fit decreases [4]. When noise levels are high the evolu-
tion dynamics of points in small neighborhoods becomes
dominated by noise. Thus it is natural that the BBA
technique produces poorer results as N increases. The
ZEP method circumvents this problem by using small
shells instead of balls for its neighborhoods [7]. If the
size of the shell is large compared to the noise then the
dynamics of points within the shell will not be dominated
by noise. For our numerical experiments we used
minimum shell radii of 2.4, where A is the level of the
noise. Consider Figs. 1 and 2. If the shell size is large
compared to the noise then these figures indicate that the
shell size could cover as much as 10-20 % of the attrac-
tor.

The original ZEP method used linear maps to evolve
the data in the shells forward in time. The BBA method
(and independently the method of Briggs [6]) demonstrat-

Gaussian Noise (N=4000)

L]
w
-
-

_ AT
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ — A -
20 5 -2 T HJ“
10 10 10
Noise (A)

Gaussian Noise (N=4000)

1.0 - T W
(d) .
- |
l;.;:' S [T a £ = it
0.0 + ]
A A
A &
< ! -
i _
40%
) S - A -
|
20 3 e e
Noise (A)

FIG. 3. Lyapunov exponents calculated from noisy Hénon map data. The solid lines indicate the accepted values of A, and A,. (a)
The solid symbols come from the ZEP method while the empty symbols come from our method. In this figure N =750 and the noise
is Gaussian. (b) The solid symbols come from the ZEP method while the empty symbols come from our method. In this figure
N =4000 and the noise is Gaussian. (c) The solid symbols come from the BBA method while the empty symbols come from our
method. In this figure N =750 and the noise is Gaussian. (d) The solid symbols come from the BBA method while the empty sym-
bols come from our method. In this figure N =4000 and the noise is Gaussian.
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Guassian Noise (N=1100)
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FIG. 4. Lyapunov exponents calculated from noisy Ikeda
map data. Only the two Lyapunov exponents corresponding to
the true values are shown. The solid lines indicate the accepted
values of A; and A,. (a) The solid symbols come from the ZEP
method while the empty symbols come from our method. In
this figure N =1100 and the noise is Gaussian. (b) The solid
symbols come from the ZEP method while the empty symbols
come from our method. In this figure N =20000 and the noise
is Gaussian. (c) The solid symbols come from the BBA method
while the empty symbols come from our method. In this figure
N =1100 and the noise is Gaussian.
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ed that if clean data was used, then employing higher-
order fits can increase the accuracy of the calculated
values of the negative Lyapunov exponents. In this paper
we have included this adaptation to the original ZEP
method. We see from the tables that in some instances
the higher-order fits increase one’s ability to accurately
calculate the Lyapunov exponents. (For example the re-
peated values of A,;~0.344 for N, =2 lends confidence to
these values.) But this is not always the case, as is clear
from Table III. For this case it is only our foreknowledge
of the correct values of A (or inconclusive arguments
about the size of N versus the size of A) that allows us to
know that N,=1 is the most correct answer. Our new
method always has a clear plateau structure (cf. Table I
for N,>2, Table II for Np > 5, and Table III for N, > 4).
We have repeated all of our calculations for data sets
contaminated with uniform noise. We find that the quali-
tative behavior of the methods remains unchanged. Our
method is better than ZEP since it is able to correctly
determine the values of all of the Lyapunov exponents
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FIG. 5. Lyapunov exponents calculated from noisy MGOY
map data. The solid lines indicate the accepted values of A, and
A,. (a) The solid symbols come from the ZEP method while the
empty symbols come from our method. In this figure N =2000
and the noise is Gaussian. (b) The solid symbols come from the
ZEP method while the empty symbols come from our method.
In this figure N =20000 and the noise is Gaussian.
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FIG. 6. Lyapunov exponents calculated from noisy data from
the MGOY map. In this figure N =2000, and the noise is uni-
form. The solid lines indicate the accepted values of A, and A,.

while the ZEP method is unable to determine the values
of the negative Lyapunov exponents in the same two out
of three cases. The amplitudes of the differences between
the accepted and the calculated values of the Lyapunov
exponents for fixed A decrease when uniform noise is
used instead of Gaussian noise. [Compare the results of
Fig. 5(a) and Fig. 6.] This is to be expected. Uniform
noise is restricted to the range [ — 4, A]. The Gaussian
noise from our tests exceeded this range 32% of the time.
Thus for fixed 4 Gaussian noise can appear to be larger
than uniform noise.

III. CONCLUSION

In conclusion we have presented a technique for deter-
mining a global map that can be used to calculate the
spectrum of Lyapunov exponents from a scalar data set.
Our approach is different from other approaches in two
ways. (i) Our approach works well when the data has
been contaminated by high values of additive noise. (ii)
Our approach uses a single global function whose Jacobi-
an is used to form the Oseledec matrix, Eq. (4). To sub-
stantiate the claims made above we have compared our
method to the ZEP and BBA methods for calculating
Lyapunov exponents. (The ZEP method is the only other
technique we know of that specifically addresses the issue
of extracting Lyapunov exponents from a noisy signal.)

The numerical experiments show that the ZEP method
is capable of determining the positive Lyapunov exponent
for all of our test cases. They also show that the ZEP
method is unable to determine the correct value of the
negative Lyapunov exponent in two of the three test
cases. In contrast the method based on orthonormal po-
lynomials was able to determine both the positive and
negative Lyapunov exponent for all of the test cases. The
BBA method was always incapable of determining either
of the exponents. The conclusion we reach is that the re-
sults of our numerical experiments indicate that a map
trained by the orthonormal polynomial technique is supe-
rior to current techniques for extracting Lyapunov ex-
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ponents from scalar data sets. Furthermore, we have
demonstrated that the training of the global polynomials
requires a relatively small number of data vectors.

The existence of a clear plateau for a range of N,
values (cf. Tables I-III) is a significant result. One of the
failings of all previous techniques for calculating
Lyapunov exponents is the difficulty associated with
determining the correct values for the A’s when different
values of N, are used. This “art”-like component of the
calculation implied that one often has very little
confidence in the values obtained by the calculations.
The existence of relatively unambiguous plateaus in our
method indicates that the calculated values of the
Lyapunov exponents are consistent with improved mod-
eling. Therefore, they warrant much more confidence
than previous methods.

As always, when attempting to determine the
Lyapunov spectrum from a data set one must be sure that
the system under investigation actually has a low dimen-
sional attractor. If the data that is used in our procedure
does not come from a low dimensional attractor then the
calculated spectrum will be of little, if any, value. For ex-
ample, if stock-market data is fed into our technique one
will get d; Lyapunov exponents. However, it does not
follow that the market must be a d-dimensional dynami-
cal system living on a chaotic attractor.

In Fig. 7 we iterated the mapping that resulted from
training F with N =2000 points contaminated with 20%
noise. The first noisy data vector y(1) was then iterated
using the trained map. As one can see by comparing
Figs. 1 and 7 the fitting procedure we use produces a map
in close approximation to the true dynamical mapping.
This approximation is much closer than one might expect
to find, given such large noise levels, and accounts for
why one is able to calculate the Lyapunov exponents.
Similar figures arise when other initial conditions are
used.

The theorems of Mafié and Takens imply that if
the true and embedded dynamical systems are

¥y \-0.5 0
(?(h *7 ) 0.5 5

-0.
0.5 )g = x(m)

FIG. 7. Results of training a map with 20% noisy data and
then iterating a single point 1000 times.
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z(n +1)=G(z(n)) and y(n +1)=F(y(n)), respectively,
then a diffeomorphism exists between the coordinates z
and y, y=¢(z). This result leads to F=¢oGog~!. Fig-
ure 7 and the results of our Lyapunov exponent calcula-
tions suggest that the mapping determined by our train-
ing procedure is a close approximation to the map in the
embedded phase space. For example, the F determined
by our procedure is a close approximation to @o Go g~ !.
Since polynomials form a complete basis set we can, in
principle, obtain an arbitrarily close approximation to the
true F. We will take up these speculations in more detail
in our larger paper [11].

Further applications of this technique for finding F
may involve noise reduction and the calculation of local
Lyapunov exponents. We are currently investigating the
possibility of using an F constructed by this method to
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determine the vector field when the scalar data set is from
a differential equation instead of a map. It is our belief
that this will allow one to calculate Lyapunov exponents
for these systems in the presence of noise.
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